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Properties of an optical soliton gas

A. Schwache and F. Mitschke*
Institut für Angewandte Physik, Universita¨t Münster, Corrensstrasse 2/4, D-48149 Mu¨nster, Germany

~Received 18 November 1996!

We consider light pulses propagating in an optical fiber ring resonator with anomalous dispersion. New
pulses are fed into the resonator in synchronism with its round-trip time. We show that solitary pulse shaping
leads to a formation of an ensemble of subpulses that are identified as solitons. All solitons in the ensemble are
in perpetual relative motion like molecules in a fluid; thus we refer to the ensemble as a soliton gas. Properties
of this soliton gas are determined numerically.@S1063-651X~97!08406-7#

PACS number~s!: 42.65.Tg, 42.65.Sf, 42.81.Dp
a-
rti
o
n-
th

er
a
ha
o

ee
t
h
p
e
pe

ec

nd
n
a

m

d
it

ion,
to
t-

ded
lose
here

pe

th

li-

iod

rved
e

rea-
will
In
of
ra-
ma

e a
n
tal
s’’
ed
r,
a-
INTRODUCTION

It is well known that in a variety of nonlinear wave prop
gation processes there exist pulses with special prope
and special shape called solitons. Solitons can form fr
initial conditions that can be quite different from their eve
tual shape. They can collide and pass through each o
without being destroyed; this was noted in@1# and lead to
their name, which implies a particlelike property. In fib
optics, in particular, solitons are the natural bits of inform
tion for long-distance transmission, a conclusion that
considerable impact on future telecommunication techn
ogy.

Wave propagation in optical fiber is well understood; s
e.g., the book by Agrawal@2#. One has to take into accoun
group velocity dispersion and self-phase modulation. T
former is usually written as a power series in frequency se
ration from the central frequency of the light; in many cas
it suffices to consider what is known as second-order dis
sion, commonly expressed as the parameterb2. The latter is
caused by what is often referred to as the optical Kerr eff
The index of refractionn of silica fiber is given by
n5n01n2I , wheren0 is the small signal index familiar from
classical optics,I is the light intensity, andn2 is the Kerr
coefficient, which here takes values arou
3310220 m2/W. Note that this expression implies an insta
taneous response of the medium, which is a reasonable
proximation for pulses much longer than the Raman ti
TR , which is of the order of 10214 s.

The influence of bothb2 and n2 is captured in the cel-
ebrated nonlinear Schro¨dinger equation~NLSE!

i
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]z
5
1

2
b2

]2A

]T2
2guAu2A. ~1!

A refers to the envelope of the electrical field,z is distance,
andT is local time.g5n2v0 /cAeff is the nonlinearity coef-
ficient; hereinv0 is the optical frequency andAeff the effec-
tive mode cross-sectional area. Depending on the desired
gree of approximation, the NLSE is often enhanced w
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further terms describing fiber losses, higher-order dispers
or the delayTR of the response of the medium that leads
Raman scattering. In what follows, we will add on the righ
hand side the terms (i /6)b3]

3A/]T3 for third-order disper-
sion. We emphasize, though, that this correction is ad
solely to make the correspondence to our experiment as c
as possible; the essentials of the phenomena described
occur in their absence just as well.

It is well known that the NLSE exhibits a constant sha
solution of the form

A~z,T!5AP1sech
T

T0
expS i

2LD
zD , ~2!

which is called the fundamental soliton. It has a pulse wid
T0 and peak powerP151/gLD . LD5T0

2/ub2u is a character-
istic dispersion length.

There also exists an infinite family of higher-order so
tons of integer orderN (N-soliton bound states! with
PN5N2P1. The shapes of all higher-order integer orderN
solitons oscillate and repeat after the soliton per
z05(p/2)LD .

The ability of fiber solitons to form from initial nonsoliton
pulses and acquire their characteristic shape was obse
experimentally in@3#. An experimental observation of th
soliton interaction was reported in@4#, where pairs of co-
propagating solitons were studied. However, it stands to
son that whatever applications may evolve one day, they
presumably deal with many more than just two solitons.
this paper we will consider an ensemble of solitons, all
which can interact. There is a considerable amount of lite
ture on such a situation in various fields such as plas
physics@5# and solid-state physics@6# under the name of a
‘‘soliton gas.’’ However, with few exceptions@7,8#, this lit-
erature is theoretical. For fiber optics in particular there ar
few theoretical papers@9–11#, but no experiments have bee
reported. Falling just short of presenting actual experimen
data, we present an experiment in which a ‘‘soliton ga
does form; unfortunately, the ultrashort time scales involv
have made it unfeasible so far to ‘‘see’’ it directly. Howeve
we will study its statistical properties by numerical simul
tion.
7720 © 1997 The American Physical Society
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55 7721PROPERTIES OF AN OPTICAL SOLITON GAS
I. EXPERIMENT

Consider a piece of single-mode fiber closed onto its
such as to form a ring resonator. Feed this resonator at s
input coupler with pulses of light of durationt in , which is
much shorter than the resonator round-trip timet round ~typi-
cally, t in will be a few picoseconds andt round several nano-
seconds!. Also, arrange for the repetition timet rep of the
external drive pulses to be equal to the round-trip time.
other words, consider a synchronously driven fiber ring re
nator. A sketch of the experimental setup is shown in Fig
For further detail, see Refs.@12–14#.

Propagation around the ring is described by the NLSE
above. The additional ingredient now is the interference
tween a pulse inside the ring with an external feed pulse o
every round-trip time. Owing to the self-phase modulati
acting on the pulse in the fiber it will acquire a chirp; up
interference, this chirp will translate into amplitude effec
For example, whenever the phase of both interfering pu
match constructively the resulting pulse will have a pe
whereas in positions of opposite phase the resulting p
will have a notch due to destructive interference.

As has been described before@15#, the pulses traveling in
the ring will acquire complicated shapes after only a f
round-trips. This has been studied under conditions of n
mal dispersion and was shown to give rise to optical tur
lence. It was also shown that a measure of the complexit
the shapes is given by the ‘‘system size’’@13,14#. This quan-
tity is determined by the ratio of two widths: the width of th
feed pulses divided by the typical width of the narrow su
structures emerging from the process. The latter in t
equals the correlation width set by the amount of dispers
The situation may be compared loosely to that of hydro
namic turbulence, where an upper length scale of eddie
set by the container size and a lower length scale by vis
ity.

In the present paper we concentrate on the case wher
fiber has anomalous dispersion. We find that now individu
isolated narrow subpulses emerge from the feed pulse.
ure 2 shows a typical situation. Superimposed is the f
pulse for comparison. Evidently, the substructure can e
only within the width of the feed pulse.

We will proceed by first demonstrating that the subpe

FIG. 1. Schematic of the experimental setup. Laser, cw mo
locked laser; ATT, variable attenuator; OD, optical diode~Faraday
isolator, prevents feedback into the laser!; fiber, typically 10 m of
single-mode polarization-preserving fiber. The inset defines
pulse widtht in and the repetition timet rep. Resonator round-trip
time is denoted byt round. For synchronous drive,t rep5t round.
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are indeed solitonlike. Then we will discuss how many su
solitary pulses can emerge. Finally, we will look at the de
sity and the kinetics of the subpulses.

II. NUMERICAL EXPERIMENT

Since the ultrafast time scales involved make a dir
measurement on a single shot basis extremely difficult,
have to resort to a numerical simulation for now. The pres
investigation is based on a split-step Fourier calculat
similar to that in@2#. We typically used spatial steps of 5 cm
and 1024 time steps for a total time window of, e.g., 50
for 10-ps pulses. Periodic boundary conditions were us
energy conservation were monitored to guard against
merical inaccuracies. For the data discussed below,
round-trips were preiterated to let any initial transients
out. Then 1000 more round-trips were calculated; this c
stitutes the database to which all analysis below will refe

First we extract the position, peak power, and width of
maxima as a function of time. To find the position and pe
power is a straightforward routine. The determination of t
width requires a remark: Since it is common in experime
to describe pulses by their half-widtht full width at half
maximum rather than byT0, we use a routine that searche
the half maximum points on either side of each maximum
obtain the widtht. Occasionally, two subpeaks are so clo
to each other that this strategy fails; in such cases we m
no further attempt to determinet. It turns out that some
maxima are detected mostly in the wings of the whole str
ture that are really just small ripples in the power profi
~compare Fig. 2!.

A. Subpeaks are solitonlike

Under the conditions chosen, the prominent maxima h
typical peak powers ofP540–200 W and typical widths
around t5600–1600 fs. It is also quite obvious that th

e-

e

FIG. 2. Feed pulse and substructure are shown over one ro
trip around the nonlinear ring resonator or 100-m fiber. 200 rou
trips were preiterated, during which the feed pulse~shown as a
dotted line with exaggerated vertical scale for comparison! has re-
shaped into an ensemble of subpulses. Parameters: input
power Pin580 W, input pulse widtht in510 ps; dispersion:
b25210 ps2/km, b3520.135 ps3/km.
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7722 55A. SCHWACHE AND F. MITSCHKE
highest peaks tend to be the narrowest. This anticorrelatio
shown in Fig. 3, whereP is plotted overt22. One easily
identifies two branches. The majority of data points is at v
low values ofP and can have any value oft22 over the
range shown and larger. This branch consists of linear wa
and numerical noise. The other branch corresponds to n
linear pulses and displays a linear trend so thatPt2'const.
The solid line, shown for comparison, represents the com
nations ofP andt that one expects for an unperturbed fu
damental~i.e.,N51) soliton. This line is not a fit to the data
there are no free parameters. The peak power of the fu
mental soliton is given by

P15Csech

ub2u
gt2

, ~3!

where the numerical factorCsech54 ln2(11A2)'3.11 origi-
nates from the sech2-like power profile. It is quite apparen
that the nonlinear pulses fall close to this line; this justifi
the identification of these pulses as solitonlike.

A different way to display these data is to introduce t
soliton orderN throughPN5N2P1 into Eq.~3! and solve for
N. Then, from the widtht and peak heightP of the pulses
we can empirically determine an estimate of the soliton
der, which we callN* , as

N*5A P

P1
5A gPt2

Csechub2u
. ~4!

A fundamental soliton should haveN*'N51 all the time.
Other pulses will have different values, and as their sha
change, so willN* . However, whenever their shape is re
sonably close to sech2, the identification ofN* and N is
reasonable.

Figure 4 shows a histogram of allN* values encountered
over 1000 round-trips; the peaking atN*51 is unmistake-
able. The other peak atN*50 is due to linear pulses; for th
sake of clarity we will from now on cut their number b
disregarding maxima with a peak power not exceeding 2

FIG. 3. Diagram of correlation between peak power and wi
of subpulses. Only subpulses with peak power greater 0.5 W
taken into account. Parameters: input peak powerPin540 W, others
as in Fig. 2. The solid line is the theoretical expectation for
fundamental soliton@Eq. ~3!#.
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We conclude that the pulses, while perturbed strong
eventually settle to a fundamental soliton, as evidenced
the correlation of pulse width and peak power. Since ther
a considerable spread in both widths and peak powers,
proceed to look at the distributions of these quantities. Al
since we deal with a whole ensemble of pulses, we look
their number and mutual distance.

B. Distribution of peak power of solitons

In the following section, we are repeatedly faced with t
problem that linear and nonlinear pulses exhibit differe
properties so that statistical measures, taken blindly, re
sent an ill-defined mixture. We therefore attempt to sepa
both ‘‘populations’’ by defining a threshold criterion: Pulse
with N*.1/2 are identified as nonlinear; only these will b
considered further. Note, however, that a complete sep
tion is not feasible because both populations merge at
powers and become undistinguishable by this criterion. D
to this imperfect separation, linear pulses still contribute
very high and rather narrow peak at fairly low power in t
histogram of peak powers~see Fig. 5!. Beyond the crossove
to the nonlinear pulses, the histogram decays exponenti
as evidenced by the linear decay in the semilogarithmic p
of Fig. 3. It means that very powerful pulses are rare.

C. Distribution of width of solitons

The histogram of the pulse widths is shown in Fig.
Again, for large widths there is an exponential decay in
cating that very wide pulses are very rare. On the other ha
very narrow pulses are also very rare, which is not too s
prising because very powerful pulses were shown above

h
re

e

FIG. 4. Histogram for the soliton order estimateN* obtained
from 1000 round-trips. Same data and parameters as in Fig. 3
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55 7723PROPERTIES OF AN OPTICAL SOLITON GAS
be very rare too. The overall shape of the histogram
sembles a distributionP(t)5at3exp(2t/b) with a,b fit con-
stants~formally, a Planck distribution!, shown as a solid line
and intended merely to guide the eye.

FIG. 5. Histogram for the subpulse peak power. From 20
round-trips all subpulses with peak power greater 2 W and with a
soliton order estimateN*.0.5 were taken into account. The param
eters are the same as in Fig. 3.

FIG. 6. Histogram for the subpulse widtht. Same data as in Fig
5. The solid line guides the eye~see the text!.
-

D. Scaling of the separation of solitons

It was pointed out above that the width of the solito
scales with dispersion according tot}Aub2u. Figure 7 shows
this relation for the average pulse width^t&. Evaluation of
the separation between neighboring solitons reveals
within the accuracy of the fit there is the same type of sc
ing: Fig. 7 shows the average separation^DT& plotted versus
Aub2u. Thus therelative pulse separation~in units of pulse
width! does not depend on dispersion. The dependenc
^t& and ^DT& on the input power is shown in Fig. 8; agai
there is a linear relation withP21/2 for both ^t& and ^DT&,
while the relative pulse separation varies only slightly.

E. Distribution of the separation of solitons

The histogram of the separation between neighbor
pulses looks very similar to the pulse width histogram~Fig.
9!. In fact, we use the same type of function for the solid li
to guide the eye. Very wide pulse spacing is improbable a
so is a very close distance. This is a significant deviat
from a purely random distribution of pulses over the ava

0

FIG. 7. Mean values for the pulse widtht and the distance
DT between the subpulses during the fiber propagation for diffe
values ofb2. Other parameters are the same as in Fig. 5.

FIG. 8. Mean values for the pulse widtht and the distance
DT between the subpulses during the fiber propagation for diffe
values of input powerPin . Other parameters are the same as in F
5.
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7724 55A. SCHWACHE AND F. MITSCHKE
able interval; the latter would result in a monotonic~approxi-
mately exponential! distribution, whereas the actual distribu
tion clearly has a maximum.

One might have the suspicion that the maximum could
an artifact due to difficulties of counting all pulse pairs co
rectly when the separation between neighboring pulses
comes smaller than the width of the participating pulses.
checked this by creating the corresponding histogram of
tances for only those pulses that have a pulse width of
than 0.3 ps. The maximum of the distribution remained at
ps, so that such an artifact can be ruled out.

F. Number of solitons

Figure 2 graphically illustrates the development of a pu
during the fiber propagation over one round-trip, start
right after interference. Evidently, not only are the shape
position of solitary subpulses subject to fluctuations, but s
their number. Figure 10 shows that the number^n& changes
not only during interference, but also during propagati
The average number̂n& ~where the average is taken ov
many round-trips! is essentially determined by their separ
tion and the available width, the latter given by the fe
pulse width, in the same spirit as the number of substructu
is given by the system size~see above and@13,14#!.

We test this assumption by varying the input pulse wid
and tracking^n& at the end of each round-trip. First, w
control the system size by varyingb2; it is expected to scale
asAb2 @13,14#. As Fig. 10 shows, there is indeed the e
pected behavior. Second, we control the system size by
of varying the input pulse width; with all other paramete
kept constant, it increases linearly witht in . Figure 11 shows
the result: Indeed,̂n& grows linearly with t in . One con-
cludes that the average separation between subpulses

FIG. 9. Histogram for the subpulse separationDT over 1000
round-trips. Same data as in Fig. 5. The solid line guides the
~see the text!.
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remain essentially constant as long asb2 is constant; this is
corroborated by Fig. 7.

III. SOLITON FLUID

We have so far considered the ensemble of soliton
pulses with respect to their static properties. In fact,
whole ensemble is in constant motion, much like the ato
in a fluid. In keeping with terminology in the literature, w
therefore refer to the ensemble as a soliton gas.~Note, how-
ever, that in the absence of compressibility data the dist
tion between a gas and a liquid is not obvious.!

We have stated how the~average! number of ‘‘particles’’
in this gas determined. By using the average separation g
above, we can also define the densityr5^DT&21/D, where
D is a dimension and in this case the dimension of the e
bedding spaceD51. We have preliminary data indicatin
that from the relative motion of the solitons, also a ‘‘tem
perature’’ can be defined that depends on the pump pow
Further characterization of the soliton gas in the spirit
thermodynamics and statistical mechanics must be left
future work.

e

FIG. 10. Mean number of subpulses during the fiber propaga
for four different values ofb2. Other parameters are the same as
Fig. 5.

FIG. 11. Mean number of subpulses for different input pu
width. Other parameters are the same as in Fig. 5.
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55 7725PROPERTIES OF AN OPTICAL SOLITON GAS
IV. CONCLUSION

We have described an experimental situation in which
ensemble of subpulses is created from a broader input p
Individual subpulses have been shown to be solitons.
ensemble as a whole is in constant motion, suggesting a
of particles: hence the term soliton gas. Direct experime
verification will be very challenging in view of the very sho
time scales involved and the necessity of single-shot ob
vation. Meanwhile, numerical investigation provides detai
,

ev
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se.
e
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r-
d

statistical material on the properties of such gas. The sol
gas provides a unique opportunity to study the interacti
between a large number of solitons.
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